72 research outputs found

    On the excessive [m]-index of a tree

    Full text link
    The excessive [m]-index of a graph G is the minimum number of matchings of size m needed to cover the edge-set of G. We call a graph G [m]-coverable if its excessive [m]-index is finite. Obviously the excessive [1]-index is |E(G)| for all graphs and it is an easy task the computation of the excessive [2]-index for a [2]-coverable graph. The case m=3 is completely solved by Cariolaro and Fu in 2009. In this paper we prove a general formula to compute the excessive [4]-index of a tree and we conjecture a possible generalization for any value of m. Furthermore, we prove that such a formula does not work for the excessive [4]-index of an arbitrary graph.Comment: 12 pages, 7 figures, to appear in Discrete Applied Mathematic

    Covering a cubic graph with perfect matchings

    Full text link
    Let G be a bridgeless cubic graph. A well-known conjecture of Berge and Fulkerson can be stated as follows: there exist five perfect matchings of G such that each edge of G is contained in at least one of them. Here, we prove that in each bridgeless cubic graph there exist five perfect matchings covering a portion of the edges at least equal to 215/231 . By a generalization of this result, we decrease the best known upper bound, expressed in terms of the size of the graph, for the number of perfect matchings needed to cover the edge-set of G.Comment: accepted for the publication in Discrete Mathematic

    Covering cubic graphs with matchings of large size

    Full text link
    Let m be a positive integer and let G be a cubic graph of order 2n. We consider the problem of covering the edge-set of G with the minimum number of matchings of size m. This number is called excessive [m]-index of G in literature. The case m=n, that is a covering with perfect matchings, is known to be strictly related to an outstanding conjecture of Berge and Fulkerson. In this paper we study in some details the case m=n-1. We show how this parameter can be large for cubic graphs with low connectivity and we furnish some evidence that each cyclically 4-connected cubic graph of order 2n has excessive [n-1]-index at most 4. Finally, we discuss the relation between excessive [n-1]-index and some other graph parameters as oddness and circumference.Comment: 11 pages, 5 figure

    Normal 6-edge-colorings of some bridgeless cubic graphs

    Full text link
    In an edge-coloring of a cubic graph, an edge is poor or rich, if the set of colors assigned to the edge and the four edges adjacent it, has exactly five or exactly three distinct colors, respectively. An edge is normal in an edge-coloring if it is rich or poor in this coloring. A normal kk-edge-coloring of a cubic graph is an edge-coloring with kk colors such that each edge of the graph is normal. We denote by χN′(G)\chi'_{N}(G) the smallest kk, for which GG admits a normal kk-edge-coloring. Normal edge-colorings were introduced by Jaeger in order to study his well-known Petersen Coloring Conjecture. It is known that proving χN′(G)≤5\chi'_{N}(G)\leq 5 for every bridgeless cubic graph is equivalent to proving Petersen Coloring Conjecture. Moreover, Jaeger was able to show that it implies classical conjectures like Cycle Double Cover Conjecture and Berge-Fulkerson Conjecture. Recently, two of the authors were able to show that any simple cubic graph admits a normal 77-edge-coloring, and this result is best possible. In the present paper, we show that any claw-free bridgeless cubic graph, permutation snark, tree-like snark admits a normal 66-edge-coloring. Finally, we show that any bridgeless cubic graph GG admits a 66-edge-coloring such that at least 79⋅∣E∣\frac{7}{9}\cdot |E| edges of GG are normal.Comment: 17 pages, 11 figures. arXiv admin note: text overlap with arXiv:1804.0944

    On cubic bridgeless graphs whose edge-set cannot be covered by four perfect matchings

    Get PDF
    The problem of establishing the number of perfect matchings necessary to cover the edge-set of a cubic bridgeless graph is strictly related to a famous conjecture of Berge and Fulkerson. In this paper we prove that deciding whether this number is at most 4 for a given cubic bridgeless graph is NP-complete. We also construct an infinite family F\cal F of snarks (cyclically 4-edge-connected cubic graphs of girth at least five and chromatic index four) whose edge-set cannot be covered by 4 perfect matchings. Only two such graphs were known. It turns out that the family F\cal F also has interesting properties with respect to the shortest cycle cover problem. The shortest cycle cover of any cubic bridgeless graph with mm edges has length at least 43m\tfrac43m, and we show that this inequality is strict for graphs of F\cal F. We also construct the first known snark with no cycle cover of length less than 43m+2\tfrac43m+2.Comment: 17 pages, 8 figure

    Flows and bisections in cubic graphs

    Get PDF
    A kk-weak bisection of a cubic graph GG is a partition of the vertex-set of GG into two parts V1V_1 and V2V_2 of equal size, such that each connected component of the subgraph of GG induced by ViV_i (i=1,2i=1,2) is a tree of at most k−2k-2 vertices. This notion can be viewed as a relaxed version of nowhere-zero flows, as it directly follows from old results of Jaeger that every cubic graph GG with a circular nowhere-zero rr-flow has a ⌊r⌋\lfloor r \rfloor-weak bisection. In this paper we study problems related to the existence of kk-weak bisections. We believe that every cubic graph which has a perfect matching, other than the Petersen graph, admits a 4-weak bisection and we present a family of cubic graphs with no perfect matching which do not admit such a bisection. The main result of this article is that every cubic graph admits a 5-weak bisection. When restricted to bridgeless graphs, that result would be a consequence of the assertion of the 5-flow Conjecture and as such it can be considered a (very small) step toward proving that assertion. However, the harder part of our proof focuses on graphs which do contain bridges.Comment: 14 pages, 6 figures - revised versio
    • …
    corecore